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Abstract In this study, to develop the optimal composition
of ceramics for low loss piezoelectric actuator and ultrasonic
motor applications, (K0.5Na0.5)(Nb0.97Sb0.03)O3+0.009
K5.4Cu1.3Ta10O29+0.1wt%Li2CO3+xwt%Bi2O3(x00~0.9)
lead-free piezoelectric ceramics with a fixed quantity of
0.009 K5.4Cu1.3Ta10O29 (abbreviated as KCT) were manu-
factured using the conventional solid-state solution process-
es. The effects of Bi2O3 addition on the dielectric and
piezoelectric properties were then investigated. From the
X-ray diffraction analysis result the specimens demonstrated
orthorhombic symmetry when Bi2O3 was less 0.6 wt%, a
pseudo-cubic phase appeared when Bi2O3 was 0.9 wt%.
SEM images indicate that a small amount of Bi2O3 addition
affect the microstructure. The piezoelectric properties of
(K0.5Na0.5)(Nb0.97Sb0.03)O3 ceramics were greatly improved
by a certain amount of Bi2O3 addition. Excellent properties of
density04.54 g/cm3, relative densities098.5 %, kp00.468,
Qm01,715 and d330183 pC/N were obtained with a compo-
sition of 0.3 wt% Bi2O3

Keywords Piezoelectric .Bi2O3
.KNN .Electromechanical

coupling coefficient (kp) . Mechanical quality factor (Qm).

1 Introduction

Lead-based piezoelectric ceramics such as Pb(Zr,Ti)O3, Pb
(Mg1/3Nb2/3)O3and Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 systems
have attracted the attention of many researchers due to their
excellent piezoelectric properties. However, these lead-

based ceramics can cause critical environmental pollution
and damage to the human body. Therefore, in recent years,
lead-free piezoelectric ceramics have increasingly been
studied. Among these, lead-free piezoelectric compositions
such as K0.5Na0.5 NbO3(KNN) are considered promising
candidates due to their strong piezoelectricity and ferroelec-
tricity [1]. In typically sintered KNN ceramics, a piezoelectric
constant (d33)080pC/N, electromechanical coupling factor
(kp)036–40 %, and mechanical quality factor (Qm)0130 are
obtained [2].

The major disadvantage of pure KNN, however, is diffi-
culties in obtaining sufficiently dense ceramics by conven-
tional sintering in air. In order to improve the densification
and piezoelectric properties of KNN-based ceramics, addi-
tives have been incorporated in KNN-based ceramic sys-
tems, with notable examples being KNN-LiSbO3 and KNN-
LiNbO3-(Ag0.5Li0.5)TaO3 [3–8].

In addition, specialized sintering processes (spark plasma
sintering (SPS), hot pressing, hot forging, RTGG(reactive
template grain growth), etc.) have been introduced for pre-
venting the evaporation of Na2O and K2CO3 and to lower
the sintering temperature to overcome the drawback of
insufficient density [9–12]. Many researchers have found
that improved piezoelectric properties can be obtained at the
polymorphism phase transition (PPT) temperature, which is
different from the morphotropic phase boundary (MPB) in a
PZT system. At various compositions, the piezoelectric
properties were improved at PPT that occurs at room tem-
perature, but the piezoelectric properties at the PPT temper-
ature are very sensitive to temperature. Therefore, many
studies have been performed with the aim of shifting the
PPT to higher temperature than room temperature [13].

Piezoelectric actuators and ultrasonic motors require a
high electromechanical coupling factor (kp) and piezoelectric
constant (d33) in order to induce large strain that is proportional
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to the applied electric field. Furthermore, in order to prevent
heat generation of the actuator, when it is driven with high
voltage for a long time, a high mechanical quality factor (Qm)
and temperature stability are required as temperature instability
can limit the applicability of the piezoelectric device [14–16].

We previously reported that the sintering aid K5.4

Cu1.3Ta10O29 (KCT) could remarkably improve the density
and piezoelectric properties of KNN ceramics prepared by
an ordinary sintering process [17].

In this study, the effect of Bi2O3 addition on the structure,
phase transition behavior, and piezoelectric properties of
(K0.5Na0.5) (Nb0.97Sb0.03)O3+0.009 K5.4Cu1.3Ta10O29+
0.1 wt% Li2CO3 ceramics with a fixed 0.009 K5.4Cu1.3T10O29

composition were investigated for application to a low loss
piezoelectric actuator and ultrasonic motor .

2 Experimental

The specimens were manufactured using a conventional
mixed oxide process. The compositions used in this study
were as follows;

K0:5Na0:5ð Þ Nb0:97Sb0:03ð ÞO3 þ 0:009K5:4Cu1:3Ta10O29

þ 0:1wt%Li2CO3 þ xwt%Bi2O3 x ¼ 0; 0:3; 0:6; 0:9ð Þ

The raw materials, Na2CO3 (99.5 %), K2CO3 (99.5 %),
Sb2O5 (99.9 %), Nb2O5 (99.9 %), CuO (99.9 %), Li2CO3

(99 %) and Bi2O3 for the given composition were weighted
by mole ratio and the powders were ball-milled for 24 h.
After drying, they were calcined at 880 °C and 950 °C for
6 h and 5 h, respectively. Thereafter, Bi2O3 and KCT were
added as sintering aids and then the specimens were ball-
milled and dried again. Polyvinyl alcohol (PVA: 5 wt%
aqueous solution) was subsequently added to the dried
powders. The powders were molded under pressure of
2,000 kg/cm2 in a mold, burned out at 600 °C for 3 h, and
then sintered at 1080~1120°Cfor 5 h. The dimensions of the
specimens were 17.2Φ(diameter)×1 mm(thickness). Poling
was carried out at 100 °C in a silicon oil bath by applying a
field of 3 kV/mm for 30 min. In order to investigate the
dielectric properties, capacitance was measured at 1 kHz
using an LCR meter (ANDO AG-4034) and the dielectric
constant (εr) was calculated. Piezoelectric constants were
obtained using a d33 meter (APC 8000 piezo d33 tester). For
investigating the piezoelectric properties, the resonant and
anti-resonant frequencies were measured by an Impedance
Analyzer (Agilent 4294A) according to the IEEE standard
and then kp and Qm were calculated [18].

An X-ray diffractometer (XRD) (Rigaku, D/MAX
2500 V) with CuKα1 radiation (λ01.5406 Å) was utilized
to identify the crystal structure.

(a) 0 wt% 

(b) 0.3 wt% 

(c) 0.6 wt% 

(d) 0.9 wt%

Fig. 1 Microstructure as a
function of Bi2O3 addition.
(a) 0 wt%, (b) 0.3 wt%,
(c) 0.6 wt% and (d) 0.9 wt%
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3 Results and discussion

Figure 1 shows the microstructures of specimens as a function
of Bi2O3 addition. It can be observed that all samples have
dense microstructures. The grain size showed an increasing
trend up to 0.3 wt% Bi2O3 addition and then decreased grad-
ually. Li2CO3 and Bi2O3 can form a liquid phase in the KNN-
based ceramics at 690 °C. The formation of a liquid phase has
a significant impact on improving the density and the grain
growth process of ceramics. On the other hand, the grain size
showed a slight decreasing trend at more than 0.6 wt% Bi2O3

as shown in Fig. 1. This may be due to the existence of Bi2O3

which is speculated to segregate at grain boundaries.
Figure 2 shows the X-ray diffraction pattern as a function

of Bi2O3 addition. The XRD pattern of the ceramics in range
of 2θ from 45° to 50° indicated that the specimens have
orthorhombic symmetry when Bi2O3≤0.6 wt%. Further-
more, the two diffraction peaks, (202) and (020), merged
into a single peak when Bi2O3≥0.9 wt%. The phase structure
was changed from an orthorhombic phase to pseudo-cubic

phase due to excess addition of Bi2O3. At room temperature,
the crystal structures of all samples were the pure perovskite
without any secondary phases.

Figure 3 shows the bulk density and relative density of
the specimens as a function of Bi2O3 addition. As shown in
Fig. 3, the (bulk) density gradually increased from 4.4 g/cm3

to 4.55 g/cm3 and then decreased. The relative densities as a
function of Bi2O3 addition were 95, 98, 98.5 and 95.3 %,
respectively. This is attributed to Bi2O3 addition yielding
improved density though the formation of a liquid phase due
to the low-melting point of Bi2O3 and Li2CO3. The decrease
of density at 0.9 wt% Bi2O3 is attributed to segregation of
Bi3+ at the grain boundary by excess addition. It is found
that the (bulk) density and relative density reach maximum
values of 4.55 g/cm3 and 98.5 %, respectively, at 0.6 wt%
Bi2O3 addition.
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Fig. 2 X-ray diffraction pattern as a function of Bi2O3 addition
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Fig. 3 Density and relative density as a function of Bi2O3 addition
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Fig. 5 Piezoelectric constant(d33) as a function of Bi2O3 addition
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Figures 4 and 5 show the electromechanical coupling factor
(kp) and piezoelectric constant (d33) as a function of Bi2O3

addition. kp and d33 gradually increased and then decreased. It
is found that kp and d33 reach maximum values of 0.468 and
183 pC/N respectively, at 0.3 wt%. Therefore, it can be
concluded that Bi2O3–doped ceramics can offer improved
the kp and d33. In addition, the formation of a liquid phase
has a significant impact on improving the kp and d33.

Figure 6 shows the mechanical quality factor (Qm) accord-
ing to the amount of Bi2O3 addition.Qm rapidly increased and
then decreased. A similar tendency was observed for kp. In
general, it is well known that soft-doping deteriorates Qm,
however, in this system, Qm increased due to the improved
sinterability. Therefore, in this system, 0.3 wt% Bi2O3 addi-
tion is regarded as the optimum composition. It is found that
Qm reaches a maximum value of 1,715 at 0.3 wt% Bi2O3.

Figure 7 shows the dielectric constant (εr) as a function of
Bi2O3 addition. The dielectric constant (εr) gradually in-
creased from 1056 to 1075 as x increased from 0 wt% to
0.3 wt% and then rapidly increased from 1075 to 2478 as x
increased from 0.3 wt% to 0.9 wt%. It is found that the
dielectric constant (εr) reaches a maximum value of 2478 at
0.9 wt% Bi2O3 addition. This phenomenon can be illustrated
by the finding that with the substitution of the Bi 3+ ion for the
A site of an ABO3 perovskite structure, may act as a donor
dopant and then increase dielectric constant (εr) of the speci-
men. Figure 8 shows the temperature dependence of the
dielectric constant at 10 kHz. The 0.9 wt% Bi2O3 added
specimen shows weak ferroelectric properties. This result
corresponds with the XRD-pattern. With increasing Bi2O3

addition, the Curie temperature Tc and orthorhombic-
tetragonal phase transition temperature To-t shifted toward
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Fig. 7 Dielectric constant (εr) as a function of Bi2O3 addition
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the lower temperature region. For KNNS-0.009 KCT-
0.1 wt%Li2CO3-x wt% Bi2O3 ceramics, two sharp phase
transitions known as To-t and Tc varied from 211 °C to 183 °
C and from 370 °C to 359 °C, respectively.

Figure 9 shows the P-E hysteresis loop of KNNS-0.009
KCT-0.1 wt%Li2CO3-x wt% Bi2O3 ceramics with x00, 0.3,
0.6 and 0.9 wt% sintered at 1080–1120 °C. All the specimens
showed a typical hysteresis loop. The remnant polarization
(Pr) gradually increased from 4.98 μC/cm2 to 7.97 μC/cm2 as
x was increased from 0 wt% to 0.6 wt%, while the coercive
field (Ec) gradually decreased from 5.26 kV/cm to 4.54 kV/cm
as x was increased from 0 wt% to 0.3 wt%. Table 1 shows the
physical characteristics of the specimens as a function of
Bi2O3 addition.

4 Conclusion

Lead-free (K0.5Na0.5)(Nb0.97Sb0.03)O3+0.009 K5.4Cu1.3Ta10
O29+0.1 wt%Li2CO3+ x wt%Bi2O3 piezoelectric ceramics
were prepared by the conventional solid state reaction
and normal sintering processes. Their piezoelectric and di-
electric properties were investigated as a function of Bi2O3

addition. The results obtained from the experiment are as
follows:

1. Bi2O3 doped (K0.5Na0.5)(Nb0.97Sb0.03)O3+0.009
K5.4Cu1.3Ta10O29+0.1wt%Li2CO3 ceramics showed
enhanced piezoelectric and dielectric properties due to
improved sinterability.

2. The crystal structure of the specimens demonstrated
orthorhombic symmetry when Bi2O3 was less than
0.6 wt% and the two diffraction peaks, (202) and
(020), merged into a single peak when Bi2O3≥
0.9 wt%. The crystal structure changed from orthorhom-
bic phase to pseudo-cubic phase at composition exceed-
ing 0.9 wt% Bi2O3.

3. At the composition with 0.3 wt% Bi2O3 sintered at
1080 °C, excellent physical properties (density04.54
[g/cm3], kp00.468, Qm01,715 and d330183 pC/N) were
obtained, suitable for low loss piezoelectric actuator and
ultrasonic motor applications.
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Table 1 Physical characteristics
of the specimens as a function
of Bi2O3 addition

Sintering
temp. [°C]

Bi2O3

(wt%)
Density
(g/cm3)

Relative
density (%)

kp Qm d33
(pC/N)

Dielectric
constant

1080 °C 0 4.40 95 0.387 807 134 1056

1080 °C 0.3 4.54 98 0.468 1715 183 1075

1080 °C 0.6 4.55 98.5 0.409 556 149 1596

1120 °C 0.9 4.39 95.3 0.26 126 121 2478
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